Code: EE8T3A

IV B.Tech-II Semester-Regular/Supplementary Examinations-April 2017

POWER SYSTEMS DYNAMICS AND STABILITY (ELECTRICAL \& ELECTRONICS ENGINEERING)

Duration: 3 hours
Answer any FIVE questions. All questions carry equal marks

1. a) Draw the schematics of stator and rotor circuits of a synchronous machine and develop the basic equations of stator and rotor of synchronous machine. Draw all the necessary illustrations.
b) Discuss on the Modelling of different types of loads.
2. a) Explain the Steady state stability limit.
b) Explain the dynamic state stability limit.
3. a) Derive the numerical solution of Multi-Machine Transient Stability Problem Using Classical Machine Model.
b) Prepare the list of assumptions associated with the mathematical model of a synchronous machine.
4. a) Explain the concept of equal area criterion. How can it be used to study transient stability?
b) Derive the Numerical solution of the Swing Equation.
5. a) Explain the concept of Multi machine stability in detail.
b) Discuss in detail about the Transient stability enhancement of Multi Machine system.
6. a) Explain the effect of governor action on power system stability.
b) Explain the Effect of exciter on power systems stability.
7. a) Classify the different types of Exciters. Mention the Drawbacks of DC Excitation systems.
b) Explain Rotating Self Excited Exciter with direct loading Rheostatic type in detail.
8. a) Explain in detail about the operation of Rotating Amplifier Regulators and draw the VI characteristics.

7 M
b) Discuss in detail about the Static Voltage Regulators.

7 M

